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ABSTRACT 

In many tracking applications, adapting the target appearance model over time can improve performance. This 
approach is most popular in high frame rate video applications where latent variables, related to the objects appearance 
(e.g., orientation and pose), vary slowly from one frame to the next. In these cases the appearance model and the 
tracking system are tightly integrated, and latent variables are often included as part of the tracking system's dynamic 
model. In this paper we describe our efforts to track cars in low frame rate data (1 frame / second), acquired from a 
highly unstable airborne platform. Due to the low frame rate, and poor image quality, the appearance of a particular 
vehicle varies greatly from one frame to the next. This leads us to a different problem: how can we build the best 
appearance model from all instances of a vehicle we have seen so far. The best appearance model should maximize the 
future performance of the tracking system, and maximize the chances of reacquiring the vehicle once it leaves the field of 
view. We propose an online feature selection approach to this problem and investigate the performance and 
computational trade-offs with a real-world dataset.   

1. INTRODUCTION 
Geographically referenced (geo-spatial) video acquisition systems are now in practical use. Wide area imaging sensors 
are placed on helicopters, balloons, small aircraft or unmanned aerial vehicle and geographically referenced video is 
communicated to a ground station in real-time. Compared to satellite imagery, which provides data at time scales of 
months or years, geo-spatial video provides data to observe and model temporal phenomena at time scales of seconds or 
minutes. Geo-spatial video exploitation presents new challenges for computer vision researchers. First, many objects of 
interest (e.g. vehicles and people) cover very few pixels and therefore specific recognition is very difficult. Second, 
moving object detection in this imagery is an unsolved problem. Data arrives at about 1 or 2 frames per second, which 
means point-like moving objects move anywhere from 1 to 200 pixels. In addition, the oblique viewing angles and 
incomplete digital elevation maps mean buildings and other landmarks suffer from parallax. This introduces a large 
amount of motion clutter. Finally, registration is often required in real-time and is therefore approximate, e.g., stationary 
objects might move up to 30 pixels over a short period of time. All these factors combined lead to unique, and extremely 
difficult recognition and tracking problems.  

Lucas-Kanade1,2 is perhaps the most well known template tracking algorithm, and works by having a template (a patch of 
an image) and a model for distorting the patch. The parameters of the distortion (often translation and rotation but can 
also include complex warps such as projective warps and even appearance models) are adjusted to minimize the sum 
squared error between the distorted image patch and the image. If the tracker is expected to work over a long period of 
time, then the template will cease to be a good match for the image, and tracking will be lost. Updating the template is 
difficult: even if tracking is very accurate the template appearance can drift over time and cease being an accurate 
representation of the object in question. Consequently considerable effort has been put in to extending the template 
model to account for appearance variations.  Bergen et. al. uses arbitrary smooth, non-parametric warps, which allows 
the shape of the object to change in non-trivial ways3. Other approaches use a set of basis patches (learned from training 
examples) and compute the warp parameters and linear combination of basis patches for tracking4,5. Matthews et. al. also 
tackle the problem of updating the template6. Tracking is performed in two stages, first to the current template, then to 
the original template. If the relative appearance change between the two stages is small, then tracking is good, and the 
current template is updated from the current frame. This is extended to active appearance models by recomputing the set 
of appearance bases each time the template is updated. Several researchers approach adaptive appearance models in 
tracking as an online learning problem7. Jepson et. al. maintain a three part mixture model for the appearance and adapt 
the model parameters over time with an online EM-algorithm8. Perhaps most relevant to our paper, Collins et. al. 
implement online feature selection within a mean shift tracking system9.  



 
 

 
 

Recognition and tracking are intimately related and therefore in many tracking algorithms, recognition and tracking are 
tightly integrated. This type of approach is particularly powerful in high frame-rate, high resolution applications such as 
face recognition, where successful tracking depends on accurate estimation of latent variables related to 3d geometry, 
such as pose, and camera position. In our paper, we keep the recognition and tracking systems as independent as 
possible: the recognition system is responsible for producing likelihood images for the location, and the tracking system 
produces location and velocity estimates. This separation is partly motivated by the fact that our tracking system will 
eventually combine many different inputs, not just recognition. Examples of other inputs include moving object 
detection, and prior information related to geographic information systems such as road maps. It is also likely that the 
tracking system will also be used to combine information from other types of sensors.  

2. THE DATASET 
The number of pixels on target is very small (e.g., 6 by 20 pixels). There is also a large variation in ground sample 
distance, and large variations in lighting due to shadows and sun glint. Combined, this means the variation in appearance 
of the same vehicle can be very high, as shown on the left of Figure 1. There are also occasional occlusions, caused by 
trees and overpasses. On the right of Figure 1 we highlight the registration problems found in the dataset. This figure 
shows the results of stacking 100 frames, and then slicing the stack along a column, so that the horizontal axis 
corresponds to rows in the image, while the vertical axis corresponds to time. The view selected has us looking head on 
into the highway, so that the lanes can be seen on either side of the median, with cars appearing as the transient light 
blips. The wavy columns show the jitter present in the system; given perfect registration, the bright column of the 
median would be perfectly vertical in the image. It is apparent from the image that the jitter has both short (i.e. sub-
frame interval) and long term frequency components, and reaches about 6 pixels per frame in the worst case present 
here. It is clear that registration correction will be essential for accurate tracking performance, however, in this paper we 
investigate what can be done with this data as provided.   

          
Fig. 1. Left: Four different views of the same vehicle taken over a short 30 second period. Right: a slice through the spatio-

temporal image cube to illustrate registration artifacts.  

3. RECOGNITION SYSTEM 
In this section we investigate the performance of recognition in the geo-spatial video data set. Recognition is typically a 
delicate balance between specificity and invariance, appropriate to the problem. As illustrated in Figure 1, our problem is 



 
 

 
 

extremely difficult since the inter-class variability is very similar to the intra-class variability. In an effort to be as 
specific as possible, our recognition system is based on template matching, and our initial experiments investigated the 
best choice of distance function. We compared:  
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where ( ),i jI is the image intensity at location ( ),i j , T  is the template andμ is the mean intensity over a template sized 

area and ,k l vary over the template pixels. The template pixels are defined by masks which are manually specified. 
Examples of these masks are shown in the top row of Figure 2. Only pixels that lie within these masks contribute to the 
scores in Equations 1 through 3. The template matching algorithm is made rotationally insensitive by applying the 
template at 8 different rotations (45 degrees apart) and selecting the maximum score for NCC, and the minimum score 
for SAD and SSD.  

We identified 5 instances of 10 different vehicles within the video dataset, and manually delineated each vehicle with a 
polygon paint tool. Figure 2 shows three of the largest vehicles within the set of 10, and also shows the vehicle masks 
associated with the single trailer vehicle. Each vehicle is used as the target class in turn. The template associated with 
this vehicle is applied to the 4 other images which contain the vehicle of interest. These images are typically around 512 
by 512 pixels. The output from the (rotated) template match algorithm is then thresholded. We count detection if there is 
an above threshold pixel within the vehicle masks. We count a false alarm if any other pixel, is above threshold. This 
experiment is repeated for every vehicle within the set of 5, and for every one of the ten vehicles, for a total of 50 
experiments. The ROC curves are averaged and shown in Figure 3, where it is clear that the NCC distance function is the 
best choice for this problem. 

 

 
Fig. 2. Example of vehicles used to evaluate the different distance functions. The top row shows an example of the masks 

used to define which pixels contribute in Equations 1 through 3.  

 



 
 

 
 

 
Fig. 3. Detection Rate versus False Alarm Rate for the three distance functions over 50 trials.  

4. TRACKING SYSTEM 

In the traditional tracking problem we assume at a given time t , a set of observations ty , and state variables tx . The 

goal is to estimate the current state, tx ,given all observations seen so far. Assuming a first order Markov process, and 
applying several independence assumptions, we arrive at the standard Bayesian tracking recursion10 :  
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The first step is a prediction step; the second is filtering. The technique requires us to provide a model of state 

evolution, ( )1t tp x x − , and a likelihood function, ( )t tp y x  appropriate to our application. We use the popular 

Particle Filter to efficiently estimate Equation 4 using sequential Monte Carlo techniques11. The output from the tracking 

system is the estimated mean of ( )1:t tp x y .  

4.1 State Evolution 

In our application the state variable tx  has four variables: two for position and two for velocity. We implement a simple 
linear motion model where the position is updated based on the current velocity. Due to the low frame rate, and high 
level of jitter, the velocity is propagated with additive noise. The noise distribution is an asymmetric Gaussian whose 
major axis is orientated to the velocity direction. The aspect ratio of the Gaussian is proportional to the velocity 
magnitude. This distribution is motivated by the observation that vehicles traveling at high speed are less likely to 
change direction.  

4.2 Likelihood Function 

In this paper, the only input to the tracking system is the recognition algorithm, which is applied to each frame 
independently. This means we only have an observation related to the position state variables. For computationally 
efficiency, the recognition algorithm is only applied to a finite window surrounding the current state estimate. In our 
experiments this window was 256 pixels by 256 pixels. For positions outside this window, the likelihood function 
returns 0.  

We found that using the recognition algorithm output directly was a poor choice for the likelihood function. In simple 
terms, the template distance function is not a smooth function of the position. Peaks in the distance function are often 



 
 

 
 

single pixel wide, which means there is little difference between the likelihood of states close to correct, and the states 
which are widely incorrect. Our solution is to apply an adaptive threshold to the distance function output, in which the 
25 highest pixel values are set to 1, and the remainder set to 0. We then apply Gaussian smoothing with a 15 pixel 
variance.  

5. ADAPTIVE APPEARANCE MODELS 
We assume that a track is manually initiated, by specifying a location of a vehicle in a particular frame, and the polygon 
mask, much like those used in the recognition experiments. The simplest approach is static and involves repeated 
application of the user defined template on all subsequent frames. We will compare several adaptive recognition systems 
to this static system in our experiments.  

5.1 Adaptive Single Template model (AST) 

 At one extreme, the state estimate is used to redefine the recognition model at each frame. This approach is problematic 
due to its high sensitivity to estimation errors, however we include it in our experiments for comparison. A key factor in 
obtaining specificity with our template matching approach is the asymmetric masks which separate the vehicle pixels 
from the background. If we are to update the template, using on the tracking systems predicted location, this mask 
information is no longer available. Our solution to this problem is to affine warp the new template to the original 
template, using a hierarchical mean-squared error registration technique provided by Philippe Th´evenaz’s Pyramidal 
Sub-registration software12. The package performs a multi-scale affine match in order to avoid being trapped in local 
minima during the optimization process. We found large vehicle rotations (e.g. vehicles turning corners) were sometimes 
problematic, and therefore we rotate the image in 22.5 degree intervals, and run the registration algorithm 16 times to 
find the best match.  

5.2 Growing Multiple Template model (GMT) 

A second technique is to accumulate templates throughout the track. Since our dataset is relatively short (44 frames) it 
was computationally feasible to keep the first user defined templates, and all subsequently predicted templates as the 
recognition model. As templates are accumulated they are warped to the user defined template as with the AST method. 
All templates are applied in turn, and the maximum response is retained. We then threshold and smooth as described in 
section 4.2. This approach is typically far too expensive to use in practice. We implement it in this paper for comparison 
only.  

5.3 Adaptive Multiple Template Model (AMT) 

Ideally an adaptive appearance model would combine the strengths of the above approaches and sensibly incorporate 
new information when appropriate. We would like the execution time of the system to be constant throughout the track, 
similar to the AST and static template methods, but we would also like the model to capture more or less variability as 
required, similar to the GMT approach. We can consider this a feature selection problem: at each time step we simply 
choose a subset of the templates from all the templates we have seen so far. One way to choose this subset is to use a 
training set. The basic idea is illustrated in Figure 4. Positive training samples selected by tracking system. Negative 
training samples are selected from a surrounding grid. In our experiments we choose 8 negative examples spaced 100 
pixels apart.  

We store features (templates) and training samples separately. Features are image patches that have been extracted from 
the image, and warped to the first frame template. This warping was described in Section 5.1, and is necessary to align 
the vehicle patch with a template mask. We also store image patches the same size as the original template for each 
training sample, but these are not modified. Each template is applied to all training samples. In figure 4 the grayed areas 
correspond to the samples where the template is applied to samples drawn from the same frame. Applying templates to 
all samples is order O(T2), however, it is computed incrementally, as shown by the dashed samples in Figure 4, and 
therefore at any time T, only 2kT-k evaluations are required. In our experiments T was small, and this execution time 
was negligible compared to applying the recognition model itself. In a complete system samples should be discarded. 



 
 

 
 

 
Fig. 4. At each time step we add a new feature, or candidate template, and we also add a number of labeled training samples.  

 

After updating the training set, we must choose the subset of templates from the candidate templates stored so far. We 
make this choice incrementally using the AdaBoost discrete boosting algorithm13. AdaBoost optimizes a large-margin 
loss function for an additive model of the form:  
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where F is the maximum number of features and ( ) { }-1,1ig x ∈ is a weak learner, or in our case, a NCC score which 
has been thresholded.  The linear combination in Equation 5 starts with zero terms. For each of F iterations we add one 
new feature ( )ig x  to the model. To choose which feature to add, we take each candidate template in turn, and find the 
minimum error threshold on the training set. We choose the feature with the minimum, minimum error threshold. This 
operation is O(TNlogN).  

Several other incremental algorithms have been suggested for online feature selection could also be used for this 
problem14. For example, our algorithm does not discard candidate features over time. Obviously, as T gets large, this will 
become essential. One of the advantages of the AdaBoost algorithm is that it allows us to easily incorporate biases into 
the training set by weighting samples differently. For example, we may like to place high importance on the first sample, 
since it is known to be correct. In our experiments the first 9 samples receive as much weight as the rest of training set 
combined. In our application it would also be possible to weight all additional samples by a confidence estimate which 
could be derived from the tracking system. Finally, it is possible that high detection rate is more important for this 
application than a low false alarm rate. In our experiments we share the weight amongst positive and negative classes 
equally.  

Once we have selected F features, they must be combined to produce the final likelihood image. Ideally we would use 
Equation 5 to combine features, however the NCC output is poorly conditioned, and the thresholds found during 
Boosting are typically a poor choice for the final model. Our solution was to take the maximum response from the 
selected templates, as we do in the GMT algorithm. Although this method of combination sounds very different from 
Equation 5, the two models are somewhat similar when the output ( )h x is thresholded, as it is in our system (Section 
4.2). That is,   
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6. EXPERIMENT 
We compare the adaptive appearance models described in the previous section using real world data. We manually 
identified 5 vehicles whose trajectories cover a significant proportion of the dataset, as shown in Figure 5.  

 
Fig. 5. The five routes that were manually identified to evaluate algorithm performance.  

 

We compare these manually specified trajectories to predicted trajectories to evaluate accuracy. Notice in the Sedan 2 
track, the ground truth trajectory appears noisy due to image jitter. At this point the vehicle was stationary in traffic for a 
number of frames. For each frame, the predicted location must be within a radius of 10 pixels to be considered correct. 
The accuracy is then the percentage of frames within the track that are predicted correctly. Since the Particle Filter is 
stochastic, we applied each method 5 times, and averaged the results. For the AMT method we used F=5. The results are 
summarized in Table 1.  
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Table 1. Accuracy estimates for the 5 trajectories shown in Figure 5.  

Trajectory Static AST    GMT AMT 

Van 1 65.4 44.3 10.0 67.2 

Sedan 1 20.0 10.0 7.5 22.5 

Sedan 2 31.8 10.6 10.0 28.8 

Truck 41.9 30.5 37.4 32.8 

Van 2 94.4 97.8 100.0 100.0 

 

6.1 Discussion 

The performance of the different adaptive appearance models varied greatly, and it is clear from Table 1, that it was hard 
to improve upon the single static template. We hypothesize that this is partly due to the extreme difficulty in solving this 
problem with recognition alone. Visual inspection of the static template trajectories often show the tracking system 
output off-target, and it was only though large numbers of particles (50000), that the trajectory was reacquired. Since the 
system has difficulty remaining on track for enough time to collect reasonable templates the naïve AST and GMT 
techniques perform extremely poorly. We observe that the AMT technique performs fairly well under these 
circumstances, perhaps in part, to the large weight placed on the first frame samples.  

The Van 2 route is the easiest of the tracking problems to solve and the adaptive techniques consistently outperformed 
the static algorithm. Upon closer inspection, we observed that the static technique missed the last frame of the trajectory, 
where the Van had moved halfway out of the image. It was interesting to note that the adaptive techniques all performed 
better in this instance. Given these two examples, the AMT technique appears to combine the best qualities of both static 
and adaptive approaches, although, further improvements will be required in order to guarantee equivalent performance 
to the static case e.g., by incorporating tracking system confidence for predictions.   

7. CONCLUSIONS 
We have presented a novel application of incremental learning algorithms for online feature selection in tracking. The 
approach is general purpose, computationally efficient and can incorporate prior information easily. We applied the 
algorithm to a difficult real-world problem and obtained promising results. In future work we look to supply additional 
inputs, and prior knowledge, to the tracking system, so that we can provide the necessary context to overcome the 
difficult image quality and registration problems, and obtain reasonable tracking performance.   
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